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O PROBABILITIES POR EXTREME VALUES OF SUES OF RANDOE VARIABLES
DEFINED O A FONCGENECUS MARBOV CHATH WITH A FINITE BUEBER OF STATES

[‘Fmawmg is a tmnglatim of an ar‘hiala by I. 8. Volkov
riva Yoroyatnoste Primeneniva Prehmw.y

1, Statement of the Problem

Let EjBnsecey By be the set of possible states of a simple homo='
gensous Harkov ¢haing o(k) the state of the cbain at the instant of time
k(k = 0y Iy 24 oua)3 P = . ‘the transition probability matrixz. We
ghall give on the states afk% the unigque function £{e(k)):

fle(k)) = 8y, if olx) = Eis E O,

@im*s ¢ ponenegative integers which do not depend on k and use Fm(n,s)
%e the probebility B

P oo fo(k)) = sse(n) = By o(0) = E, .
fle shall hold to the Pollowing defimitions (L 1.7y [ 27s £ 5.7): the
seguence of gltales

(Eiiiaiz.,.gﬁ ) (1.1)

is called the ghalp if Pﬁ'ﬁiﬁl 0@ 3 =1)
f(Eil) % ftEﬂg) P sane ¥ f(Eﬁ ) iz the waﬁgh‘h of the chain (1«1);

the length of the chain (1.1); the chain (1.1) is called a gyole
Pyg, O
L[#(my) + 2(8y ) + oeo + £(Ey ).7 1 tho specific weight of the eycle
(1.1); eand are the smallest and greatest speeific weights respectively
of t?aeaa eyalaa (1.1) for which the following conditions are satlsfied:
Eil ie attainable from B,
b) By is attaizsble from By,
| ©) A1 states By Bye sess By ave different,
Henceforth we shall consider only those ¢ycles which satliasfy ve=

quirements a) and b); we shall sall eyelas with speeific welght minimal
and those with specific weigkzt maxds




n
For the sequence of random varisbles {% f(a(k))} (=04 1yaoa)

the velues Sn 4 ¥, 4n + VY { Y = const) sre extreme in the sense thst,
on one hand, for all sufficfently large the following relationship ia
satisfied identically oo n:

?@(u’ Sn=/") =0 P%j(n; an+ ") =0

and at the seme time, as implied by the definitions of & and &, there
exist constants T34 [p such that the following inequality holds:

Umaup P (o, snd [R)>05 1im P.i(n, an + 5) >0,
n-=> L+ : ;n—oﬂom qQitte 2

4 study will be made in this article on the asympiotie behavior
of the probabilities ng(n, Sn+Y), qu(a; an % y ) (where Y i2 an

arbitrary but fized mwber) as n-» o, It will be established that the
quantity P, al{ns Sn + Y ) ecan h? ?pmmntaé in the form of a sum of &
finite m%gr of componeuts P@ /(Y g) which do not depend on n and
which possesg the following properties;

- , {n)
If Yo (mod J g then P =,
g; I 2{: £ vhen N %; then (o) =05

pg =V + Lo (modZ, {¥%5))sV = 0 (mod T5(¥))y then the ratio

..._.EAR o) (Vo) . wnds to a flnite Mmit ¢ 7( ) which 1s

ng © (L)1 2(1,)
larger than sero.

The complete definition of all the guantities introduced here re=
guires a mumber of preliminsry mmiéemti?a?. %o note here only that
the basls for separating the componments p, (R (¥g) is the possibility of
decomposing the set of all chains of length n + 1 and weight §n + ¥
into nonintersecting penvils of trajectories and observing the rule: the
trajestoriss of one penell ghould be cbtelned from a fized chadn by
adding minimal oyecles at certain places,

It »ill be proved inm this article that an exect expression for
?q;(”‘* &n # Y ) has the form of & sum of a finite nuwber of terms

&kngk Rkﬁ which do not depend om ny the values of the constanits ay, Bys
and 2y ave found by the method of geperating funotions.
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fnalogous results can be obtained for P.sln, «n+ ) from the.
statenents formulated sbove if wo meke use of formala

B m
Foglng n+ ) =P - £(e(k)) =
ot 0 te4 T

= . () = By o(0) = %

Bt 2 e = R Q) = %

iﬂiﬂ B iﬁai s o(n j e 'y *

having noted that the eyeles of a chain which are maximal for given
values of a3 turn out %o be minimel on passing from s to

8 = 8y = 840
kg * 4
The author is grateful $o 4. H. Holmogorov and B, A. Sevashiyanov

for valuable aseistance.
2« 7The Construction of Chains of Lenmgth n + 1 and Welght =n +
1#, ¥Ue shall give a wapping of the seb of all chains of finite
length into 1tself in the following manpers in an arbitrarily chosen
ehain (1,1) we note all repetitions of the initiel state (in the given

case By )3 let them be observed at kyy kos «ss s ki plaves; from among
the eycles

(Eil%awiﬁi )} {ﬂ = ki -1y kz - 1; “uep kt - 1) (2;3.)
we single out the longest minimal eycle == say (Bj .ee By )anﬁmmw

it from the chain (1.1); we then obiain another chain, aamly
tﬂii" By » By e }J+» By definition,

(BygByyeeeBy ) = (BygBy By, joeely )o

If there are no minimel eycles (ingwaﬂarifmemmm
general no repetitions of the state 311) among the eyeles (2,1), then

(ByyeeeBy ) = (ByyByoeedly )o
2°, Let us teke one of the chains of length n + 1 and weight of

nt 3
(ByByyeeeBy )e (2.2)
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Ist @(%%lnﬂn%) - (%Eiﬁgi 1*3’&; ’E’i!i) $
@{Eiuf"";* 3" Bg) (E"‘:LE" R “’:aﬂ"'%)’
@(ES,O-Z ”&Rig—z.ﬂ»ﬂ" ’"Ein} = {Eiqz *lﬂia) g

The sequence of states By, Eirl,Egvz, essp E”"Z ;,Eiﬂ forme a

chaing we shall eall 1t the reduced cheln corresponding to the given chain
(2.2) 5 and more generally, to the given value of n (with fimed).

Each reduced chain (ByyFrysesBq,) possesses the following
propertiess 4

a) If By = By (0<i % =), then the specific weight of the

cyele {Eo.iﬁo.i ﬂ.nﬁ%ﬂl} is greater than &

2
b) %f(ﬂc&) “S+ 1.

Conversely, any of the chaing which satisfy these two requivements
is a reduced chaing 1t still remalng, however, to discover whieh one of
them corvesponds to whieh values of n.

. ¥We shall use vy { v) to denote the set of all chains begin-
ning at E,, ending at K., a% possessing properties a) and b) forsulated
in Point 2 of Bection 27 ¥e shall convince curselves that the set

Mqg(¥)s On the strength of property b), this would meen that

8
lin e &
1-> o0 (2.3)

whers 8; is the weight of the separated chain with mumber i, However,
ipassmeh as any chain of length m + 1 contains ab least one cygle, them,
in view of property a), (2.3) contradiets the minimelity of the specifie
welght & .

e note that the ast N 4( y') can be empty. In this case

?ﬁiﬁ(n’ SB+ r) =0 for all natural values of n.
Henceforth, we shall consider that the set m%(r } consists of

m( m>@) elemontal Cl* 625 .ug@m; we shall unde %ﬁ“’ 1 to be

the length of the chain (s, end 64 () to be the state exiating at the
{t 4+ 1)th plece from the origin in the ﬁhainé,’g(ﬁé £ Y P
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4%, Let Py mlm[/ be o square matrix of order m obtained
from the matrix P % |/pgy /| by the following rules ‘

3 if the transition By — 1s copteined
Pik ‘{m mintmal oycles

(€& in the oposite cese

The satrix ?g iSq ge‘aorally depommo y & b
rormel form all blocks are isclated since, secording to (2.4) by, >0
i&pli?g)that% “/50 st some netural velue Hj here

Iy | | =2y . the decomposition of P into Blocks indexes the

partitioning of the stater of the chaln into groups: the bleek formed
by elements from the lines and columns with the mumbers iys Loy sees 1y
of the matrix Py is placed in correspondence with the group of states
Eﬁlg Blos esns Eisu ¥e shall employ E&y ﬁgy sung B‘htﬁ denote non-gero
blocks %:z the nommal form of matrix Pp anﬁ#}_, dga suny 177, the groups
of ?& @ corresponding to them, In the course of the proof of lemwa §
of [ 5,/ one can be convinced of the valldity of the following statements
lepms 1. The eycle (E%,Ei%, wesy E,_l) is minimal i€ end only 1¢

those conditions are satisfieds Mgaikikﬂ>ﬂ (k = 1425000 25 8043 ® 13)e

Lowms ) permits one to explain the theoretical stochsstic sense
of the partioning of the states of the chain into groups as defined above.
Tims, we obtaing
a) All states of Wﬂh (1 Sh S, ) belong to one general

imal syole; ‘
b) Fo two states of the different groups 7, and ¥/, belong te
the same zinimal cycles ,

e} The zero blocks in the normal famaf?eamapmmmﬁ
dividual states which do not belomg to any minimal-eyele.

50, Yor the chalns (Hrefer to Point 3, Section 2) we shall
define the charsoterlstiss Le(t), Hp(t)s and Kg(t) (0 St 5 Yg»
1205 S m) by the equelities

Lg(s) =1, 1f a&p{t} =B, 3

He (1) = 1t ep(t) € 3 (2’5;

¢ 0 1rep(t)Eyy (=252 soes 7

Epf(t) = k 4f for ame h{(1< h < % ) the following are
m&ist‘mé% 'vE/
ep(k+ TIEH, (2 =0,1, een t =K, 00k ~1)ET (1) (3n
eaze k = 0 the last condition drops out); KA (t) is not defined if
ﬁﬁ(t)”ﬁg
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Let us agree that the chain Caintersects the group of states
2, = srzx; times 4f the values of t (0 % ¢S Y ) include seme such
tha¥ Hg () = hy Kg () = ¢ precisely v different (156 S m).

The method for finding sll chains of lemgth n + 1 for whieh C’,s
is the reduced chain is given by
| Lauwa 2. In order that the chain (2.2) have Csas a reduced chaln,
it is necessary and sufficient that (2.2) can be obtained frem (s by add-
ing, after gtats ¢ (&) one of the minimal coycles ending with state
eplt) (Hp(t) >0, 05 t3Yg), observing the following condition at
this time: the cyole added after e (%) must not contailn the state
#p{z) whevre Eg(t)& T <t (for those t for which X p(t) = ¢ this con-

tion drops out).

The plan for proving lemma 2 is clear from Polnts 1 and 2 of
Seetion 2; carrying oubt the proof doeas not give rise to difficulties
since it is posaible to indicate in the reduced chaln all those states
after which the minimel oycles could be removed from the initial chain
and this permits reconstruction of the cvomplete original reduced chein
in the set of all chains of Jength n + 1,

Genarally speaking, it may turn out thet for a given wilue of n
the chain Cg 4s not a reduced chain for any chain of length n + 1. The
mblz@ of which values of n correspond to a fixed reduced chain is
solved by

ieppa 3. Let the chaln €s 1ntersect groups <&f $ weey </ b 802G
not intersect any other groups</y; let J, be the index of i@ﬂgﬁiﬁt}r
of the matrix By; and let Jg be the greatest common divisor of the pume
bers 3311; eans Jh + ‘Thens

a) If chain Cpis e reduced chain for some chain of lemgth n + 1,

n= bR (med Is ) (2.6)

b) For all sufficiently large walues of n such that the condition
{2.6) is natisfled, there exist cheins of length n + 1 for which
is & reduced chain, o

Proof, In classifying irredueible Herkov chains (/"1./, [ 3.7)
it i= proved that the greatest common divisor (sbbweviated to g. ¢. d.
of the lengths of all cycles passing through a Pixed state is equal %o
the index of imprimitivity of the transition probability smatrix. The
application s}i? this proposition to groups to states < {lsk=s pM)
lelds By ™ = 0128 £ 0 (mod gp)y By = Uy, which, together with
lemna 2, permlts one to conglude that in order for a chalnm of lepgth
0+ 1 with & reduoed chain Cg to exist, it is necessary to satlsfy the
condition (2.6). |

%e shall prove the second stetement of lemma 3 by the direct
eonatruction of chains of length n + 1 by the given reduced chain, let
t = K g{t); we shall choose minimal cycles ending at e o(t) with a great-
eat eommon divisor of lengthe equal to Jp (b = Hpg(t) and substitute them

then

HEFTuA T
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in suecession, ome sfter another, in chain Cs after the state e g%

(0% = Ye)e 48 a result, the original composition of chain c is
supplemented by eyeles whose grestest common divisor of lengths 1s eqgual
to J,» %e shall begin to change the 1&:@% @i‘ the chaing thet are formed,

ropeating any of the added oycles en arbiteary pumber of times; the possi~
b&?&i’t&iﬁs available in this divestion are described by a well known lemma
 of number theory:

If %39 Xns seey Xy are natursl mmbers with the greatest common

divisor 4, then any sufficiently large mﬁu;al number ¥ such that ¥ = 0

{204 4) can be represented in the fem%ﬁ%aizimaimm-
Lo

negative integers. Choosing the lengths of the added eycles for x; and
assuping that ¥ ® h = ¥4 , we see that in order to earry out the planned
eonstruction it 48 sufficient to repeat the eynle of length x3 (1 = 1,2,...)
8y times when expanding chain G,

e shall complete eensidaratian of the structure of chaing of length
n 41 and welght $n 4 ¥ with this and pass on to aﬁaﬁy thelr stochastie

WM%;
3. The local Limit Theorem for Extreme Values 2. £lelx))

1°, ¥e shall us ( )(t) to denote the probability thet the
ghain {e(ﬂ)ﬂ (1)»9&3{&)} (5(@) L Eq) will have {&p (O)@p(l}ﬁ&tap ("5)}
a2 a yeduced ohain, Since the transformation deseribed in Foint 2 of See
tion 2 of chelng into reduced chalng is unigue and appliceble to any
chain, the following formuls is valids

Pgles Saty) = Zixp @y, (3.2)

Henceforth we shall study the behavior of each component
(n}( %p) separately.
20, ‘Lot us study the chain Cs(1SBE M), The state eg (%)
(0 $%S%s) is euch that Hg(t) > 0 corresponds to the transition
mbabilﬂ:&y matrix vhose elamﬁs beleng to thoge ninimal cyoles which
ean be substituted after e g(%) to expand the chain Csin the a&m& ige~
dieated in Lemma 2, Ve shall write this matrix as B, (‘@),
% = K g(t), matrix B 4 (t) 15 equal to Bh (h "Hg (t)) ami
t> K (t}, matrix B g ('h} is obtained from ’by striking wtlixzw and
%3}3“;8 @g ST &% te the states 9{3{ ) %’C“ glg (t)g ('ﬁ) + 1,
L3 2 3 ] L
Lot T2)(1) be the element of metrix B 5 (®) losated at the

-



intersection of the line and the column correspending to the sists

e g{t)s Pollowing the well known reasoming of the theory of Harkov
chaina, we conolude thet (R)(4) 1s aqual to the probability thet the
sequence of states 8(0)y o(1)y «sup 8{n=1) (e(0) = 0 (1)) constitutes

a miniwal cyele which does not contaln @ s7k), 8 6 (k + 1}; sesp @ p(2-1)
(k= & (£); 1P X o{t) = £, then all permitted states are solved in the
minimal cycle) end in this case it turns out that e(n) = e g(t). Since
B (%) is an drreducible matrix with nonwnegative elements, the asympto
tic expressiop for 7, () 1o given by the Perron formula (refer, for
example,; 40 / 3,.%':

23

44 (t)
Tala) gy = {3/* (+) éf‘r%‘)"‘p”(t) +O((Rp(t) = £)%) 1 m 0 (mod 34(t))

L&) ifn 0 (med ‘;a{'b))-.
{3.2)
Bore:
xf(e) is the largest positive root of the squation
dot I/ B =B, (t)!l =0 (3.3)

A ’g(‘k) is the algebraic complement to the elemwent }\P{%} - ﬂ‘pu) (t)
in the matrix lp(t}E - Bp (t)s

Colt) = g5 Last IaE =By (e)] 7 A=dp ()

Ip (#) is the index of imprimitivity of the matrix B 4(t);
¢" is some positive mumber not larger than 2e(t). _
£ ¢ >KE(t), then according to Wlelandt’s lesma (/"4./, Chepter
mxg the inequelity As{t)<2p{t « 1) holds, consequently,
qf‘p R)(t) 3 g(?./e {(x) - ¢ &)a)g o §€-l< 7“3 (k) when %.>Klg(t) =k (3.4)
e note also that Wielandt's lemma implies that Ag (i) is smaller
then the maxlons paei%iw munber of the patyix P = ([ gaik i if my not
all cycles of the chain under consideration ave minimal (% = 1, 25 eees XF Je
Zhen the speoific weights of all cycles are the same, we bave A= 1,

3 =3 ?'
g 3%, 7The method met forth below for singling out the prineipal temm
in Pﬁm}g?}) (0S5t % ¥a; 156Sm) when n —> of 45 connected with the
Pormulas (3.2) and (3.4}« First we shall introduce the following
notation: ( Moo

-3

A @ %) ?shk,
1sksm™

(3.5)
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vhere My is the largest of the absolute values of ths chavacteristic
pumbers of matrix ahk;
J4(t) = go 6e 40§} $ "
¢ 1§k§~'{%§ (8
where ‘jhk is the index of primitivity of matyix El‘k;
Ta(t) = gocede {Jp, 3 for all by for which , = /l/ (t)s (3.7
R (t) =T, for all by for which A " Ap () (3.8)
fheovem 1. Lot us asmume that the chain f{e p(0)e 4 (L) aseng (t)}
group of states dh& (k=35 24 susng ,u.) .Jﬁ times and that
it does not intersect other groups o ;.

Lot ng —oo(l = 0y 1y 25 ese) by tho laws ng 2V + % (mod Ia(t)s

v=0 (mod T5(t))s ( v 48 a fized number). Then there sxists s finite
positive limlt

4 " = 1] (v) .

Ve shall prove itlds by induction. The statement of Theorem 1 for
4t = 0 follows frem (3.2). Then ¢t > 0, we haves

(n=1), , |
. Pp Cﬁwl}?zlzzifﬁﬁ{'b) = 05 hera 2y = Lg(t-1);
Pe ()= 25 = La(t)s
ngl (k1) nﬂ(n-vk) |
= Pg {%-1);3{122 (t) 12 H, (8) >0
(refer to Point 2 of Ssction 3).
“ (3:9)
Lot us sssume thet Theorem 1 3s valid for some value ¢t » 13 then
its validity for ¢ in cese H (t) = O is certain. Lot Ee (1) > 0y then
we shall divide the possibilities represented here into three cases:
a)  Aglt) = Aaltel)y, B) 2p(2)5/s(te1)y ©) A1) Mg (842)

a) In this vases R P (¢ =R A (t-1) + 1, Porsmla (3,9) leads to the
relationship

-
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(0) 49 Ly, B Fo B
ﬂB ;?tsﬁ'l/lﬁ (ﬂ)(t) n Aﬂ (t) k=1 (kﬂl)a ﬂ (t*l) /\P kﬁl{t&l)

$)en  Tig (nek)
k=12 TE Ty (3.10)
B / '3 nv-k(t)

On the strength of the previocusly cited lemma from number theory
{refer to the proof of Lesma 3), for sach sufflciently large natural
valwe v which satisfies the condition v 20 (med J P (£)), there exist
nonenegative integers Y3( V), T,( V) such that ‘

V) + V) =V L(V) =0 (md Js(t - 1);
Yo(V) = 0 (mod § 5 (8))s

We shall use y4(J) to denote the smallest of the possible values
of %4(y) (1 =1, 2) with a fixed J , and Ys(t) to denote the least com-
mon multiple (abbreviated l.c.m.) of J P (£ = 1) and Jo(t). Hith a sufe
ficlently large value of J y the mumbers yy(v ) + k p(t) ‘

o , v=rnlv) v Is(t=1)
k= 0p 1y aee ™YL 7s 3 include Tgt) =y oo 3 Tg (81 ()}
of different residues motulo I 4 (¢ = 1); let w,( ) be the smallest none
negative one of these mwbers, Ve ghall mﬁaﬁb%ish the validity of the
following statements
R If there exists a d such that for any sufficlently
ﬁz(a &+ a) b ﬂl(ﬂ)’ (3*11)
y‘;"ﬁ 1) (t}
then the sequence =% (is)é-i %
g AT T ()

(KQ‘” v ""t*’iﬂ; ;”le: 'iit)

_has & limit.

Indeed, setting n# J + t + 1d and rejecting terms known to be
equal %o zero, we obtain

- 10 =



Hi-71 cf'; :‘f't:

£ - 7 () ]
ﬁaﬁ(t)’-»x,t s.(t} " Mﬂa k=0 ﬁ‘p (=231 ”k(m)
<) \
33‘ A /5 ﬁf"&a" 'Jk } (3:3.2) ;

where -5 ® yy(v) # £ =1+ kg (t). It can be seen fram (3.12) that

B{f) (x)
the expression for can differ, with § from
Rp(th-2, By fixed
By é 7 (s)
the sum
- L1 U g)“mi rpwkﬁ(t.l} m R y (t)=2
Mgt Rp(t-1)-1 ) v o
1 f W L !
rglig= 1)
VR gy
Ap“s." Tl

where
Jp mwlv) *teltkug () +lx(t)y  Kp(t) = leoum, {I,e (t-1),
Ga(8)} = Leoums {Jp (te1)y J, (1)f o
Ny »m{y) =t =kyg(t)
- 3 _ é
Ei 4 Zﬂ(f‘ﬁ) -

only the sboence of certsin terms whose total number does not exceed
constant independent of i, Comsaguently,

By

Bearing in mind the assumption of the induction, formmla (3.2),

w» 11 =



, P, 3408
e 4, 12
> % A,s%%% * W s:t? ~DE® T

; and the relation 52,5»«1"'! {3,3@} inoluds

. phis leta @mﬁ.ﬁ%’&m of @aﬁ@ a} by prov :
liesh of %&z@ mmmz values of 4 with which (3.11}) 1o mﬁiaﬁi@i ﬁ&»
éﬁ@%&@ﬂmy of n 45 the nupl 2 sumall

bor 2(%}. Lot vz tuwn % the avigins
Hlv) =0 (med 3, (td)s 7lvi= Y (med 0 (8))
Flvd) =0 (md 3, (81)); p{vea)=v +almed §4 (D). (2.34)

definition of wy{v ), the a@mm? (3.1) 1s
w&gﬁ%&@ﬁﬁa&ém&yﬁmmmmm@wm

vl ¥} y'g,iu} X e ,ei@im zle {W».}},, {3.15)
sl awn s ) ' i o ﬁm“ x&

EeBaills {3 €'§‘*3}§ q)(@(?ajg =y p {t1}
* Looume §Jg (1), 1, {ﬁ} .

The difference yy{V+ d) « « 3 (V] 45 divided by tte L.o.m,

{3, (8:1), T, (1) 4F and ondy L2 16 18 @ivided by each of the
é’ i%"zj s %15% finen }’»E,,;ﬁ;» Fe73 ?aiw@ mbivastion of —

0 mod 34 {te1)
4 mod T 5(%).

onsoquently, in ordar to satisfy the eguality (3,11), 4t 1s
esne m m@m that 4 be dlvided by I,(t), which was required

n(ved) - nlv) =

w % -

{t~1)



B) Zet Ade)> Asltel); then g{t) = Agt)y Rp(t) = 1,
m Zp {‘%5% - jp (‘%}q E%ﬁ&ﬁ 4 i"**fi%*"- k=3 y # % % iE g i%} L"‘"f{;; } iﬂ {3*@)
péaring ﬁa mm of %%za m by the some mathod, =8 Ir
i soalogous to {3&2};

i {gﬁgfg‘”“ J&}

ﬂfg&gf&‘ Uk{’%ﬁ

Horg, as %ﬁ%ﬁ&g@@@ﬁ fyom the cane consldered previmsly, the
guantitien ny = 1 =Jp {150y 1y 25 see) ot have %@wm«a mim '

modulo §g (%} and this permite us to write for Fg

) Pyl ?a}z% 7, (uz.G D
ﬂfﬁiigﬁ /’{6 {@} ‘ x50 1l=0 uﬁp{%&}*ﬁ./] 3&:2 {‘%33;}

(%ﬁgg « 1)
?"kl ﬁ(é{%ﬂﬁ.}*& ﬂﬁk {%&@}
g ﬁm&a astredin g ’%ﬂ {3,‘33 and {%é@& the sevies 21’ B ﬁ(‘%@}*}, x

u
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